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The distribution of radiation absorbed by the inner surface of a cylindrical 
cavity is found by the Monte Carlo method for a different nature of the reflec- 
tion and different ratios between the input beam and cavity diameters. 

At this time high-intensity energy sources(laser and electronic) are utilized exten- 
sively in heat-treatment processing (hardening, alloying, annealing) of different kinds of 
metal articles [i, 2]. This method of treatment has a number of advantages: it is local, 
without deformation, and accurate for parameter regulation, etc. The best results are 
achieved for normal beam incidence on the surface to be treated. However, for a number of 
profiled articles it is sufficiently difficult to direct the beam in such a manner even by 
using specially developed deflectors, and sometimes it is impossible; hence, radiation on 
the inner surfaces of such articles is mainly incident as a result of multiple reflections. 

The energy distribution dependent on the article configuration and the absorption and 
reflection regularities plays a substantial part in the heat-treatment process. 

By using the Monte Carlo method we compute the absorbed energy distribution on the bot- 
tom and side surface of a cylindrical cavity of radius R and length L; the origin of coor- 
dinates is here at the center of the bottom, while the z axis coincides with the cylinder 
axis (Fig. i). 

Let us first consider the directional case or radiation that enters the cavity perpendi- 
cularly to the bottom, where it is reflected diffusely from the bottom, and both diffusely 
and specularly from the side surface with a relative magnitude of the specular component 8. 
The computation is performed for unpolarized radiation in the geometric optics approximation. 
The method of trial particles is used here, in conformity with which the radiation flux Io 
is represented as a set of N identical bunches (trial particles). Each is inserted into the 
channel with initial coordinates and direction selected in conformity with the radiation 
intensity distribution in the beam. 

1 

Fig. i. Diagram of the com- 
putation model for a direc- 
tional source. The trial 
particle 1 is absorbed on 
the bottom; the particle 2 
emerged from the channel. 
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TABLE I. Dependence of 2~Pma x on 
the Channel Length and the Absorptiv- 

ity in the Case of a Directional 
Source with Diffuse Reflection (ro = 
o.5) 

I 2 5 10 

0,1 
0,5 
0,9 

0,12 
0,22 
0,07 

0,16 
0,24 
0,07 

0,19 
0,25 
0,07 

0,21 
0,25 
0,07 

For a uniform intensity distribution over the beam section, the initial radius of the 

i-th particle is determined by the following relationship: 

r~ = [U -- 0,5)/N] '/2 r0 

The path of the trial particle (the energy bunch) is then tracked until absorbed by the 
surface or emergence from the channel according to the scheme presented in Fig. i: 

i) The point of trial particle incidence on the bottom or side surface of the channel 
is determined as the intersection of the rectilinear trajectory 

X - - X o  ._ Y - - Y o  Z - - Z o  

C x Cg C z 

with the bottom (z = 0) or the cylindrical surface (x = + y= = R=). 

2) An absorption or reflection process is performed according to the given absorptivity 

(eb on the bottom, E w on the side surface) by using random numbers distributed uniformly 
between zero and one in the segment. 

3) In the absorption case the history of the given trial particle is terminated and 

consideration of the next particle starts. 

4) In the case of reflection, some kind of reflection law is performed according to a 
given relationship between the diffuse and specular components of the reflected radiation. 

5) For a diffusely reflected particle the direction is found from the relation 

0 = arcsin ]/-F-oo, ~ = 2~F~, 

where 0 and ~ are the polar and azimuthal angles, and F o and F~ the corresponding random 

numbers. 

For specular reflection the direction of the reflected particle ]' is defined in terms + 
of the direction of the incident particle ] and the unit normal to the surface n: 

The process is continued for each particle until it is absorbed or emerges from the 
channel (Fig. i). 

The quantity of trial particles N selected as a function of the conditions of the prob- 

lem and of the required accuracy, is 20,000 in this paper. 

The program written for an ES type electronic computer in FORTRAN IV permits one to 
determine the absorbed particles along the cylindrical surface layers and the channel bottom, 
and also determination of the number of particle emerging from the channel. The absorbed 
energy distribution over the cavity bottom and side surface as well as the effective absorp- 
tivity and the reflection coefficient are thereby found. The mean time for the computation 
of one version is 3 min. 

The dependence of the relative radiation density absorbed by the cylindrical surface 
on the depth is displayed in Fig. 2 for Sb = Sw = e and Eb # ~w (all the linear dimensions 
are referred to the channel radius)~ Results of computations are presented here for a beam 
filling the whole channel, i.e., with ro = 1 and a beam with ro = 0.5. In the first case 
(dashed curves 1 and 2) the distribution decreases monotonically from a maximum value at 
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Fig. 2. Dependence of the absorbed radiation density for 
a directional source on z for ~ = 2; the dashed curves 
~orrespond to ro = 1 (i, a = 0.5; 2, a = 0.9); the solid 
curves to ro = 0.5 (3, c = 0.5; 4, e = 0.9; 5, ~b = 0.5, 

c w = 0 . 2 ;  6, ~b = 0 . 5 ;  Cw = 0 . 8 ) .  

F i g .  3. Dependence o f  t h e  a b s o r b e d  r a d i a t i o n  d e n s i t y  f o r  
a d i r e c t i o n a l  ( s o l i d  c u r v e s )  and d i f f u s e  (dashed  c u r v e s )  
source for I = 4, ~ = 0.2: l) ro = i, B ~ 0; 2) respec- 
tively, 0.7 and O; ]) 0.7 and O.5~ 4) 0.7 and I. 

z = 0 (at the bottom), in the second (curves 3 and 4) a maximum is observed at a certain dis- 
tance Zmax from the bottom. It is due to the fact that the initial beam is not incident in 
the annular zone ro < r < 1 of the bottom, and consequently, the radiation flux directed at 
the part of the side surface adjoining the bottom diminishes. As ~ grows, the density Pmax 
(Table I) and the effective absorptivity ~ increase and reach maximal values ~for Z = 2~ 

2~Pmax = 0.26 and • for e = 0.45) and then tend to zero as e ~ i. Such a nature 
of the dependence is related to the competition between the absorption processes on the bot- 

tom and on the side surface. For a constant eb, Pmax grows as s w increases (curves 5, 3, and 
6 in Fig. 2). 

Computations Showed that as the channel length changes the coordinates of the maximum 

and the dimensions of the characteristic absorption domain change slightly. The quantity 
Pmax grows slowly here to emerge at a constant value, where the smaller the e the more sub- 
stantial this dependence (Table i). As the beam radius diminishes, the maximum shifts slowly 
from the bottom towards the entrance, its absolute value diminishes, and the ratio Pmax/Po 
characteriging the steepness of the distribution of P near the maximum grows. 

The absorbed radiation density within the beam limits depends s~fficiently weakly on 
the radius for the bottom, since it dr(ps abruptly (by an order) in the unexposed domain. 

TABLE 2. Dependence of the Effective Absorption Char-  
aeteristics on the Channel Length and the Fraction of 
tbe Specular Component for E = 0,2, ro ~ 0.7 

f ~ I t0 

o o ,5  I ' 1 ~ , 

~b 
~w 

Direct ional  Rotation 

0,260 0,229 0,197 ] 0 278 
0,324 0,270 0,207 " 01691 

J 
Diffuse RotaCioa 

0,110 I 0,126 0,147 [ 0,008 
01438 0,444 0,424 0,645 

0,245 0,202 
0.652 0,536 

0,027 
O, 749 

0,066 
0,852 
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TABLE 3. Comparison of Quantities Characterizing Radiation 
Absorption in a Channel Computed by the Monte Carlo (MC) 
Method and from the Solution of the Integral Equation (int) 
for a Directional Source for I = i0, ro = i, p = 0 

I • ] ~ 2apo 2apl I 2aPt 
e M.C. M.C. I int. int. 

0,2 ] 0,278 
0,8 0,809 

int. I M.C. int. 

~ ,288 ,689 0,701 
,809 0,188 0,191 1 0,112 0,113 

M.C. int. ] M.C, 
[ 

0,038 0,043 [ 0,004 
0,004 0,00321 0 

0,0034 
3.10-5 

As the fraction of the specular component B increases, the density distribution of the 
absorbed radiation becomes more homogeneous along the cylindrical surface, the maximum shifts 
towards the entrance, the characteristic dimension of the absorption zone increases (Fig. 3, 
and the effective coefficients • and ~w diminish (Table 2). 

Let us now consider the case of the diffuse radiation flux incident on the cavity ori- 
fice. The absorbed radiation distribution here becomes almost symmetric with respect to a 
section passing through the middle of the cavity z = I/2 (Fig. 3) as compared with an analo- 
gous distribution under normal incidence for small E b and large Z. This is explained by the 
fact that under normal incidence of radiation the reflection from the bottom is assumed 
diffuse, while the influence of absorption on the bottom for such ~ and I is not very sub- 
stantial. Consequently, the integral characteristics for these two cases are similar. 
Exactly as for normal incidence, if the beam radius is less than the input orifice radius, 
a maximum is formed in the distribution of p. As the fraction of the specular component 
in the reflected radiation grows, the p distribution becomes more uniform as before~ however, 
the values of • and ~ here increase (Table 2), while the maximum shifts towards the bot- 
tom (Fig. 3). It should be noted here that the results of computations for diffusely inci- 
dent radiation for ro = 1 agree with the data in [3] within the limits of accuracy. 

By using the method described it is not difficult to estimate the accuracy of the results 
obtained in [4] for the case ro = i, B = 0 by solving an integral equation for the radiation- 
flux density by an approximate analytical method. This method of solution is based on an 
exponential approximation of the functions in the equation, which characterize the probabil- 
ity of radiation incidence from one element of the channel inner surface on another. It is 
seen from Table 3 that both methods yield good agreement for both the effective absorptivi- 
ties • and • and for the relative absorbed radiation densities for different distances 

from the bottom z = 0, I/2, I (the densities po, P~, PZ correspond to these values of z). 
Let us note that the relative difference in the densities obtained by the above-mentioned 
methods increases in the domains where they have a minimal value. 

Thus, an absorbed radiation density distribution with a maximum at a certain distance 
from the bottom is formed on the side surface under both normal and diffuse radiation inci- 
dence on the diffusely reflecting bottom of a cylindrical cavity for the case ro < 1 (beam 
radius less than bottom radius). As the channel length increases, the value of the absorp- 
tion density at the maximum and the characteristic dimension of the absorption domain vary 
sufficiently weakly. The absorptivity and the faction of the specular component in the 

reflected radiation exert considerably more influence on these parameters. 

NOTATION 

R, L, cavity radius and length; ro, beam radius; Cx, Cy, Cz, direction cosines of a 
line; g, absorptivity; p, relative density of the absorbed radiation; ~, fraction of the 
specular component in the reflected radiation; • , effective absorptivity. Subscripts: 
b, bottom; w, side surface; max, maximum absorbed radiation density. 

i. 

2. 

3. 
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STABLE CONSERVATIVE DIFFERENCE SCHEMES FOR THE 

QUASILINEAR PARABOLIC HEAT-CONDUCTION EQUATION 

V. I. Gladkovskii and V. G. Karolinskii UDC 518.61:536.242 

An efficient algorithm is developed for solving the quasilinear heat-conduction 
equation using asymmetric difference schemes satisfying the discrete analog of 
the conservation law. 

The optimum regimes of plasma-mechanical treatment (PMT) [i, 2] depend essentially on 
the temperature field in the surface layer [3]. A more careful examination of processes of 
interaction of high-intensity heat fluxes with solids leads to the necessity of allowing for 
the temperature dependence of the thermophysical properties of the material being treated. 
In order to eliminate structural phase transitions in brittle metals during PMT [4], as well 
as to prevent the process of development of destructive temperature stresses, it is necessary 
to provide conditions for the heating of only that part of the volume of the component which 
is subject to removal [i]. It is proposed to calculate the temperature field in an isolated 
volume of a half-space by an approximate numerical solution of the quasilinear heat-conduc- 
tion equation [5], with boundary conditions of the first kind, using explicit, absolutely 
stable, asymmetric difference schemes (ADS), satisfying a certain discrete analog of the law 
of conservation of energy, applying averaging by the arithmetic-mean method [6]. The initial 
ADS are obtained from the heat-conduction equation using the integrointerpolation method [5] 
with subsequent splitting [7]. 

It is well known that the numerical solution of problems of mathematical physics imposes 
especially rigorous demands on both the memory volume and the operating speed of computers 
[8]. A promising method of overcoming the difficulties arising in the solution of problems 
of mathematical physics is the use of parallel multiprocessor computer systems [9]. The ADS 
method has an algorithmic structure not requiring a preliminary procedure of conversion of a 
sequential algorithm into a parallel one [i0] for the programmed execution on multiprocessor 
computers. The reduction of computer time in the use of multiprocessor computers plays an 
especially important role in the solution of nonlinear multidimensional problems of mathe- 
matical physics. 

Let us consider the quasilinear heat-conduction equation 

OT c9 3T 
-- k (T)-- (I) 

Ot Ox Ox' 
where T ~ 0 is the temperature, while the dependence k(T) ~ 0 of the coefficient of ther- 
mal conductivity is assumed to be given. For the unique solvability of the problem it is 
necessary to assign the boundary conditions 

T(O, t )= fl (t)i T(l, )) =-f2(t) (2) 

and initial conditions 

Introducing the heat-flux function 

T(x, O) = ~o(x). (3) 

3T 
W = k ( T ) -  (4) & '  

we rewrite Eq. (i) in the flux form 
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